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Studies on Melt Spinning. 111. Velocity Field 
Within the Thread 

SUSUMU KASE, Technical Departmen,t, Toyobo Co. Ltd., Kitaku Dojima, 
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Synopsis 

The velocity field within a molten spinning thread was analyzed quantitatively by 
solving the equations of continuity and momentum for Newtonian liquids. In solving 
the equations, the viscosity was assumed known and was given by the expression 

p = poe@z(l + cr2) 

where z and r are distances in cylindrical coordinates. A series solution in velocity u 
having the expression 

u = voenz(l + a2r2 + u4r' + as76 + . . . ) 
was obtained when several simplifying sssumptions were made on the equations. The 
series solution was found to converge when cr2 < 1 is satisfied. we@* and vaeaz above are 
tangents on semilog paper a t  x = z to the macroscopic viscosity and velocity profiles 
p(z)  and v(z)  which were computed separately by means of a technique developed pre- 
viously by the author.1.2 The value c was derived from the temperature profile across 
the thread a t  x = z computed separately using another technique developed by the 
author .a The above series solution showed numerically that under most conceivable 
spinning conditions the velocity field within the thread is for practical purposes flat 
across the thread and, in addition, purely extensional. 

INTRODUCTION 

To this date, the velocity field within a melt spinning thread has intui- 
tively been assumed flat across the thread and purely extensional by most 
researchers, except that Ziabicki4 discussed this problem to some extent 
qualitatively and Rlatovich et al.5 contributed theoretical reasoning by 
expanding the velocity and other variables into series and substituting 
them into the equations of continuity and momentum (hereafter called the 
Navier-Stokes equations for brevity). However, a complete solution of the 
Navier-Stokes equat,ions giving the velocity field within a melt spinning 
thread quant(itative1y has not been available. 

In the present study, the author obtained a solution to the Navier-Stokes 
equations having the expression 

v = voepz (1 + a2r2 + a4r4 + a& + . . . )  
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where v is the velocity in the x-direction and x and r are distances in 
cylindrical coordinates. The shear viscosity distribution within the thread 
was assumed known and was given by the formula 

p = Meo2(1 + crz). 

The above solution gives the steady-state velocity field within the thread 
a t  any point along the thread except in the die swell region. Values VO, a, 
PO, and 0 are functions of x and can be derived from the macroscopic thread 
thickness A(x) and thread temperature t(x) which can be computed 
separately by means of a theoretical technique developed by the author 
previously.' The c-value was derived from the temperature profile 
t(x, r ,  6) across the thread computed by using another technique developed 
previously by the author.3 

By determining the values of coefficients u2, a4 . . . numerically, the 
validity of approximating the velocity field by a flat velocity profile across 
the thread and further by a pure extentional flow is discussed. 

SOLUTION OF THE NAVIER-STOKES EQUATIONS 

The most general form of the Navier-Stokes equations in cylindrical 
coordinates (x, r ,  0) is given, for instance, in McKelvey's Polymer Pro- 
cessing.6 When the following six conditions are met, the Navier-Stokes 
equations take a simplified form, eqs. (1) through (7): (i) steady state; 
(ii) constant density; (iii) axial symmetry both in temperature and 
velocity fields; (iv) negligibility of gravity force; (v) negligibility of 
inertia forces; (vi) a known temperature profile: 

l b  bV 
- - (rv,) + - = 0 
r br bX 

VT 
788 = 2 p -  r 

bv 
T2, = 211- 

bX 

Stress rTT, etc., are the differences between the true stresses u,,, etc., and 
static pressure P. It is understood that r is positive when the stress is 
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tensile and P is positive when the pressure is compressive; p is the shear 
viscosity : 

71, = grr  + P 

788 = gee + P 

7 2 2  = Q,, 4- P 

(8) 

(9) 

(10) 

727 = usre (11) 

Equation (1) can readily be integrated to give 

rvdr . = --- 
r a z  

By substituting eq (12) into eqs. (4) through (7), we get 

bv p b2 
r,, = r7, = p - - - - 

br r ax2 
rvdr. 

When these expressions of stresses are substituted into the momentum eqs. 
(2) and (3) and P is eliminated, we obtain a single equation in v: 

In  this equation, operators written in the form of a product are to be com- 
puted from right to  left. 

Although eq. (17) looks very complex, a series solution can be obtained by 
giving apriori a viscosity profile 

p = ,.toesz (I + cr2) (18) 

and by assuming a velocity profile in the form of 

v = vOeaz(l + ulr + u2r2 + u3r3 + . . .) (19) 

where h, p, c, VO, and a are known constants and ul, u2, u3, . . . are unknown 
constants which should be determined to satisfy eq. (17) and the boundary 
condition at the thread surface discussed later. 
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If constants U I ,  az, a3, etc., can be determined in such a manner and if the 
series 

1 + alr + azr2 + a 3 ~ 3  + . . . 
converges, then the solution eq. (19) may be considered to exist. The 
approximate condition under which the above series converges will be dis- 
cussed later. Formulas (18) and (19) given a priori have the following 
interpretations. Figure 1 shows a cylindrical coordinate system taken 
with respect to a melt spinning thread, where x is the distance from the 
spinneret or, to be exact, the distance from the point where the thread 
diameter becomes largest due to die swell. In a previous study12 the 
author computed theoretically the thickness (cross-sectional area) A (2) and 
temperature t (x)  of melt spinning thread as functions of x assuming that 
thread velocity and t are independent of r .  These A(x)  and t(x) curves can 
readily be converted into thread velocity v ( x )  and shear viscosity p(x) 
curves as shown in Figure 2 plotted on semilog graph paper. The 
two C U N ~ S  in Figure 2 can then be approximated by the tangents to the two 
curves in the neighborhood of x = x. voea2 and poeaZ in eqs. (18) and (19) 
are the expressions for the above two tangents to the v ( x )  and p(x) curves. 
The factor (1 + alr + a2r2 + a3r3 + . . .) in eq. (19) signifies the velocity 
variation in T direction when an axial symmetry is assumed. 

In another previous study, the author3 computed temperature profiles 
t(x, t ,  0) within the thread assuming that macroscopic thickness profile 
A (x) can be given independently. Computed temperature profiles showed 
that, in a typical industrial melt spinning, the temperature differential 
across the thread may reach as much as about 10% of the difference 
between the temperatures of spinneret and cooling air, and that the 
temperature profile across the thread is approximately parabolic in shape. 
This implies that an approximately parabolic distribution of shear viscosity 
exists across the thread. The factor (1 + cr2) in eq. (18) represents the 
viscosity profile with the c value derived from the temperature profile. 

Strictly speaking, voeaZ and peeaZ are velocity and shear viscosity at the 
thread core, but they can be substituted by the average values over the 

Fig. 1. Thread and cylindrical coordinates. 
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cross section, i.e., the macroscopic v(x) and p(x) values above, without 
causing excessive errors. Values of pol p, uo, a, and c are functions of x, but 
as far as the solution of eq. (17) is concerned, they can safely be assumed 
constants since it takes a change in x several orders of magnitude larger than 
thread radius R before these values change any significantly. 

Equation (19) is considered to give the velocity field within a melt spin- 
ning thread under a steady state and at  any distance from the spinneret, 
provided the above five parameters are given as functions of x. Equation 
(19), however, cannot cover the die swell region where the effect 
orifice is present. 

Substituting eqs. (18) and (19) into eq. (17) and rearranging 
polynomial in r, we get 

of the 

into a 

7 5 ~ s  + (Sa2 + 643 - 3p2 + 4 5 ~ )  a3 + 
32 5 f f2  

3 3 3 
+ -a(ff  + p>c - -a% + - (a + P I 2  

+ 1 4 4 ~ 6  + 4(2a2 243 - 24c)a4 

1 
[ 

+ { (7d  + 11ffp - 2mc + 4 a2(a + w} a 
1 + 4 a2(a + p)Zc] r3 + . . . = 0 (20) 

For this relation to hold under any value of r ,  all coefficients on rm have to 
be identically zero yielding the relations 

a1 = a3 = a5 = a, = . . .  = 0 

a2 + 3ai3 
> a -  16 64 

(21) 

ff“a + SI2 (22) c -  
(; + 2a2 + 2aO - P2 

36 -) a4 

16 
a4 = - 

2 2ff2 + 2ffp - p2 
uk= - ( - c +  3 

1 
576 

ff2(a + P I 2  c. (23) 
576 

- -  [4(7a2 + 11ap - 282)c + aya + p)”la, - 

The value of a2 which is not specified in the above relations is determined to 
satisfy the boundary condition a t  the thread surface. 

We now proceed to state the boundary condition. Figure 3 shows a 
wedge-shaped segment of the thread whose slant face is the thread surface. 
If the static pressure P in eqs. (8) through (10) are expressed in gauge 
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Fig. 2. Velocity Y and shear viscosity p as functions of distance z (Spinning conditions I) 

pressure and if air drag force and surface tension are negligible, no external 
force is to act on the thread surface. If 5 is the gradient of yarn surface in 
the x-direction 

dR [ = -  
ax 

then the force balance on the wedge in the x-direction is 

rAe.Ax.a,, = r.AO-[.Ax-u,, (25) 

= ‘$aZZ. (26) 

which reduces to 

Similarly, the force balance in the r-direction yields 

The second term on the left-hand side vanishes as Ax approaches zero 
yielding 

arr  = tam- (28) 
When eqs. (26) and (28) are converted into the expressions in r using eqs. 
(8) through (ll),  we get 

r r z  = ((72, - P )  
rr7 - P = Err,. 

(29) 
(30) 
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I 

Fig. 3. Force balance on the thread surface. 

When P is eliminated from these two relations, we obtain the statement of 
boundary condition 

E(7zz - 7 1 7 )  = (1 - t 2 ) 7 r z .  (31) 

5 can also be expressed in terms of R and v by considering the equation of 
streamline within the thread : 

rvdr = f = const. sd 
By taking the total differential of this relation, we get 

At the thread surface, this becomes 

r = R  r = R  

Substituting eqs. (19) and (21) into (34), we obtain 

(34) 

The value of a2 can now be determined by considering eqs. (19)) (21)) (22), 
(23)) (31)) (35)) (13), (15)) and (16) simultaneously in unknown constants 
al, a4, %, etc. Terms containing R4 and higher become negligible in prac- 
tice, and the solution for a2 becomes 

1 1 
-a2 + [i (a2 + 3ap)c + - a2(a + 

16 - $1 R2 
(36) -2a2 -I- 243 - p 2  R2 

4 1 
a2 = 
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Other coefficients, a4, a ~ ,  etc., can be obtained by consecutively using eqs. 
(22),  (23), etc. 

Discussed next is the convergence of the series solution (19). When the 
equality in eq. (37) below is satisfied, a2 becomes infinitely large: 

1 
R2 

-2a2 + aap - 8 2  
8 

C L - -  (37) 

Therefore, the inequality above must hold. Since the second term is very 
small compared to  1/R2 under most conditions of melt spinning eq. (37) re- 
duces to  

R2c < 1. (38) 

This is the first condition for the convergence of (19). 
Under conceivable conditions of melt spinning, a and p do not exceed 

about 4 sec-I, and the thread radius R is at the most 0.05 cm, whereas the 
value of c may reach several thousand cm-2. As a result, in eqs. (22),  (23), 
etc., just the first terms on the right-hand side become significant as far as 
the convergence of eq. (19) is concerned: 

C 2 
2 2 ,  a s =  - - c  aj+l = -cca,. a4 = --a (39) 3 a41 . . . 

The coefficients - 4 2 ,  - (2 /3)  c,  . . . are known to converge to  - c .  It 
follows that the series solution (19) converges approximately when the 
series 

1 - cR2 + c2R4 - caR6 + c4R8 + . . . . (40) 

converges. Series (40) converges when cR2 < 1, which is identical to  eq. 
(38). Referring to eq. (18), the condition cR2 < 1 is equivalent to  saying 
that viscosity a t  the thread surface is less than twice the viscosity at the 
thread core. 

NUMERICAL EXAMPLES 

Conditions in typical melt spinning of PP fibers are shown in Table I. 

Spinning Conditions I 
The macroscopic velocity v ( x )  and shear viscosity p(s) profiles computed 

for spinning conditions I are shown in Figure 2. Values of a, 8, and R for 
the x = 9 cm point were derived from these curves. The c-value was 
derived from the temperature profile for the same point computed in a 
previous study3: 

a = 0.242 cm-l 
p = 0.125 cm-' 

R = 5.6 X cm 
c = 4200 
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Parameter values (41) above satisfy the condition of convergence (38) : 

cR2 = 0.132 < 1 

Values of UZ, a4, etc., given by eq. (36), etc., for the above parameter values 
are listed in Table 11. Also listed in Table I1 are t,he values for the case of 
c = 0 to know the effect of viscosity profile across the thread. 

With or without the viscosity profile across the thread, the a2R2 + 
u4R4 values are so small in comparison to unity, the velocit>y profile under 
spinning conditions I is practically flat. 

Spinning conditions 11, shown in Table 111, are for a water-quenched 
melt spinning of PET fiber in which the thinning of the thread completes in 
a narrow air gap of 2 cm. The quick thinning of the thread and the choice 
of z = 0 (vicinity of spinneret) make the values of a and R unusually large, 
tending in turn to make u2 far larger than under most other spinning con- 
ditions conceivable. It should be noted here that the choice x = 0 does 
not make the solution cover the die swell region. It simply implies a 
neighborhood of spinneret where the effect of orifice has vanished. 

(42) 

Spinning Conditions I1 

The a, 0, and R values were computed in the same manner as before from 
the p(z) and ~ ( z )  values computed in another study': 

(Y = 3.36 cm-' 

(3 = 0.117 cm-l (43) 

R = 1.57 X cm 

TABLE I 
Spinning Conditions I 

Density of polymer 
Specific heat of polymer 
Activation energy of polymer 
Spinneret temperature 
Individual thread denier 
Spinneret orifice diameter 
Horizontal cooling air speed 
Take-up speed 
Air temperature 

0 .83  g/cm3 
0.70 cal/(g deg) 
3500 deg 
27OOC 
8 
0 . 6  mm 
50 cm/sec 
500 m/min 
30°C 

Distance from spinneret 9 cm 

TABLE I1 
Solution of Navier-Stokes Equations for Spinning Conditions I 

c = o  c = 4200 

a2 -2 .93  X -3 .37  x 10-8 
a4 1.73 x 10-4 31.58 
alR2 -9.18 x 10-7 -1 .06  X lo-' 
a4R4 1.70 x 10-13 3 . 1 0  X 
a2R2 $. a4R4 -9.18 x 10-7 - 1 .03  X 
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Temperature differential across the thread is small since the vicinity of 
spinneret is now considered. However, an arbitrary c value of 

c = 203 (cR2 = 0.05) (44) 
is assumed just to add to the possible velocity gradient. 

The solution is given in Table IV. Although the velocity differential 
across the thread is one order of magnitude bigger than in Table 11, it  is 
still negligibly small. 

Proximity to the Pure Extensional Flow 
As discussed in the previous section, a flat velocity profile can be assumed 

under most conditions of melt spinning. Therefore, 
a.tJ 
- = 0. 
br (45) 

Fig. 4. Water-quenched melt spinning of PET. 

TABLE I11 
Spinning Conditions I1 (See Fig. 4) 

Density of polymer 
Specific heat of polymer 
Activation energy of polymer 
Spinneret temperature 
Individual thread denier 
Spinneret orifice diameter 
Air gap 
Horizontal cooling air speed 
Take-up speed 
Air temperature 
Water bath temperature 
Distance from spinneret 

1.33 g/cma 
0.40 cal/(g deg) 
3240 deg 
284OC 
11.25 
0.3 mm 
2 cm 
60 cm/sec 
300 m/min 
30°C 
30°C 
0 cm 

TABLE IV 
Solution of Navier-Stokes Equations for Spinning Conditions I1 

- 

a2 -5.87 
a4 444 
a2R2 -1.45 x 10-3 

a2R2 + a4R4 -1.43 x 10-3 
a4R4 2.69 X 
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Under a flat velocity profile, eqs. (13) through (16) become 

bv 
r,, = - p  - 

bX 

dV 
bX 

7 8 8  = -p - (47) 

If, further, bv/bx is a constant, the above expressions of stress becomes 

r,, = -2r,, = -2rE8 = const. (50) 

7,2 = 0. (51) 

This is the case of the pure extensional flow. The ratio of rrz over r,, may 
be considered a measure of proximity to the pure extensional flow. Using 
eqs. (15), (16), (19), and (21), this ratio a t  the thread surface is expressed as 

= -5.85 X 

= -2.48 x 
(Spinning Conditions I) 

(Spinning Conditions 11) 

Even under the highly unfavorable Spinning Conditions 11, r,, is only 
2.5% of r,,. Under the more common spinning conditions I, the ratio is a 
completely negligible - 0.57 x Under most spinning conditions, 
therefore, the velocity field within a thread can safely be assumed as pure 
extensional flow. 

By using eqs. (19), (35), (48), and (49), it can be shown that in a pure 
extensional flow, the ratio r,,/r,, a t  the thread surface is 

5 
2 

rrz/rzz = (53) 

Also in a pure extensional flow, eq. (30) becomes 

P = r,,. (54) 

By eliminating P, T,, and T,, from eqs. (lo), (46), and (45), we get 

bv 
u,, = 3p -. 

bX 
(55) 

This is a statement of the wcll-known relation that the extensional viscosity 
is three times the shear viscosity. 
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CONCLUSIONS 

1. The velocity field within a molten thread drawn and cooled in a melt 
spinning was analyzed by means of the equations of continuity and mo- 
mentum for Newtonian liquids. By making several simplifying assump- 
tions which the author’ found to be valid in a previous study, a series solu- 
tion in velocity v ,  

v = vOeaz(l + u2r2 + a4r4 + a d  + . . .) (56) 
was obtained subject to the condition that shear viscosity p is given as a 
function of distance x and radius r in the form of 

p = poesz(l + crz). (57) 
2. Solution (56) above is the steady-state velocity field in the neighbor- 

hood of x = x. Values of VO, a, PO, and @ are obtainable by a separate 
( 1  macroscopic” analysis in which p and v are assumed independent of r.  
The c value is derived from the temperature profile across the thread com- 
puted separately using a technique developed by the author previ~usly.~ 
Although these four parameters are functions of x, they can safely be 
assumed to be constants in the present analysis. 

3. Solution (56) converges when the condition 

cR2 < 1 (58) 

is satisfied. 
4. The solution showed that even under unusually stringent spinning 

conditions, a2, u4, etc., are so small that the velocity profile across the thread 
in any melt spinning can safely be assumed to be flat. 

5. The ratio r,,/r,, of stresses was found to be approximately equal to 
half of the gradient of thread surface in the x-direction and is 2.5% a t  the 
most. Therefore, the velocity field can further be assumed to be a pure 
extensional flow in most melt spinning. 

The author expresses his sincerest thanks to Dr. T. Matsuo of Toyobo Co. Ltd. for 
his valuable suggestions. 
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